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Phenomenon of data science

 Scientific and evidence-based decision
 Policy making, marketing strategy, ...
 Interpretable

 How to detect relationships 
 Size
 Complex
 Statistical models?



A motivated example

X Y Gray
1 3 118
1 10 127
1 17 127
1 21 127
1 25 130
1 26 134
1 28 135
1 35 135
1 36 141
1 37 137
. . .
. . .
. . .



Fundamental question

Given (𝑿𝑿𝟏𝟏,𝑌𝑌1),⋯ ,(𝑿𝑿𝑵𝑵,𝑌𝑌𝑁𝑁), 

𝑌𝑌 = 𝑓𝑓 𝑿𝑿,𝜃𝜃



A motivated example





Mixture-of-Experts modeling

 Proposed by Jacobs et al. (1991)

 Discover the hidden clusters

 Striking a balance between flexibility and interpretability



General Framework of Mixture of Experts

 (𝑿𝑿𝟏𝟏,𝑌𝑌1),⋯ ,(𝑿𝑿𝑵𝑵,𝑌𝑌𝑁𝑁)

 𝐾𝐾 gate functions and 𝐾𝐾 regression models (experts)
 𝑌𝑌𝑖𝑖 is modeled by 𝑿𝑿𝒊𝒊 through one of the experts
 It is unknown which expert is employed

 𝑔𝑔𝑘𝑘(𝑿𝑿𝒊𝒊,𝜸𝜸) = exp(𝜸𝜸𝑘𝑘
′ 𝑿𝑿𝒊𝒊)

1+∑𝑗𝑗=1
𝐾𝐾−1 exp(𝜸𝜸𝑗𝑗

′𝑿𝑿𝒊𝒊)

 Experts 
 Depends on the nature of the responses: linear, GLMS, ⋯



A motivated example

110.43 -1.63 3.47
-57.56 0.55 -0.79

-117.84 -0.49 5.16
-15.35 -0.48 2.95

. . . .

. . . .

. . . .
-362.35 -1.90 10.31

𝛾𝛾1
𝛾𝛾2
𝛾𝛾3
𝛾𝛾4

𝛾𝛾29

𝜃𝜃1 -266.27 1.83 4.98
𝜃𝜃2 -59.82 0.95 -1.40
𝜃𝜃3 -38.51 1.01 1.49
𝜃𝜃4 448.81 -1.97 -0.73
. . . .
. . . .
. . . .
𝜃𝜃30 49.93 -0.06 0.09

Gray = ∑𝑘𝑘
exp 𝜸𝜸𝑘𝑘

′ 𝑿𝑿𝒊𝒊
1+∑𝑗𝑗=1

𝐾𝐾−1 exp 𝜸𝜸𝑗𝑗
′𝑿𝑿𝒊𝒊

(𝜽𝜽𝑘𝑘′ 𝑿𝑿𝒊𝒊)



Ability to capture complex relationships

 Compare with functional data analysis (Chen, Hall, and Müller, 2011)

 Compare with Reproducing Kernel Hilbert Space (RKHS) Approach (Xiong, Qian, 
and Wu, 2013; Sauer, Gramacy, and Higdon,2023)



Computation issue

 No closed form solution

 EM algorithm or Bayesian approach

 Computation expensive for large dataset
 Depends on # of clusters, # of start values
 For the motivated example (n≈3000)

 One hour
 Take weeks for n=10^6

 Two weeks



Computation complexity and statistical efficiency

 With size of data and number of clusters increase, the computation cost 
increase dramatically

 The tradeoff between the computation complexity and statistical efficiency?

 One of six suggested core research topics of theoretical foundations of data 
science (NSF)



Two main approaches

 Subsampling with sampling probability
 Pro: Robustness, outliers
 Con: Limited by subsize

 Information-based subdata selection
 Based on optimal design theory

 Fixed n, the information increases with N



A TOY EXAMPLE ABOUT OPTIMAL 
DESIGN








Rationale 



Selecting an optimal subset

 Difference between optimal design and subdata selection
 Perfect points may not exist

 Large N and n

 Intractable 
 Discrete nature
 No tool
 N-P hard problem



Available approaches

 Information-Based Optimal Subdata Selection (IBOSS) (Wang, Yang, and Stufken, 
2019)

 Linear model 𝐸𝐸 𝒀𝒀 = 𝑿𝑿𝜷𝜷

 Characterizing the design maximizing information matrix

 An algorithm of selecting the subset based on the characterization
 Fixed n, the information increases with N

 Subsampling with sampling probability
 Limited by subsize



IBOSS approach

 Builds the theoretical foundation 

 Extends to nonlinear models: Logistic regression model

 Extends to variable selection: LASSO



Limitations

 Simple model
 Unlikely suitable for large dataset with complexity structure 
 Possible solution: Mixture of experts

 Efficiency of the algorithm?
 Based on the characterization of optimal design
 May not be efficient 



Challenges for Mixture of Experts

 Information matrix
 No explicit form 

 Charactering optimal designs

 Algorithm?



Strategy

 Choosing a subset 𝛿𝛿
 Maximizing ∑𝑖𝑖∈𝛿𝛿 𝐼𝐼𝐶𝐶𝑖𝑖
 Minimizing ∑𝑖𝑖∈𝛿𝛿 𝐼𝐼𝑀𝑀𝑖𝑖



Asymptotic result

 Under clusterwise linear regression model, where gate functions are constants 
and experts are linear



How to derive an efficient algorithm?

 Algorithm based on characterization of an optimal design?
 Pro: very fast
 Con: 

 characterization may not be feasible
 May not be efficient 

 New strategy
 approximate bounded optimal design approach



Rationale

 Approximate deign context
 Equivalence theorem

 Subdata selection
 Be selected at most once: 𝜔𝜔𝑖𝑖 = 0 or 1

𝑛𝑛

 Bounded approximate optimal design
 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 ⟺ 𝑥𝑥1, 1

𝑛𝑛
, … , 𝑥𝑥𝑛𝑛, 1

𝑛𝑛

 Ξ = {𝜉𝜉|𝜉𝜉 = 𝑥𝑥𝑖𝑖 ,𝜔𝜔𝑖𝑖 , 𝑖𝑖 = 1, … , 𝑘𝑘, 0 ≤ 𝜔𝜔𝑖𝑖 ≤
1
𝑛𝑛

}



Rationale

 𝜉𝜉∗ = 𝑎𝑎𝑎𝑎𝑔𝑔𝑎𝑎𝑖𝑖𝑎𝑎𝜉𝜉∈ΞΦ(𝐼𝐼𝜉𝜉)

 𝜉𝜉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒: 𝜔𝜔𝑖𝑖= 
1
𝑛𝑛
, 𝑖𝑖 = 1, … ,𝑎𝑎 based on 𝜉𝜉∗

 𝜉𝜉𝑜𝑜𝑜𝑜𝑒𝑒−𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒: the optimal exact subdata (projected on Ξ)
 For a selected subdata 𝜉𝜉𝑠𝑠𝑠𝑠𝑠𝑠(projected on Ξ), its efficiency is Φ(𝜉𝜉𝑜𝑜𝑜𝑜𝑜𝑜−𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜)

Φ(𝜉𝜉𝑠𝑠𝑠𝑠𝑠𝑠)
,

and
Φ(𝜉𝜉∗)
Φ(𝜉𝜉𝑠𝑠𝑠𝑠𝑠𝑠)

≤ Φ(𝜉𝜉𝑜𝑜𝑜𝑜𝑜𝑜−𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜)
Φ(𝜉𝜉𝑠𝑠𝑠𝑠𝑠𝑠)

≤Φ(𝜉𝜉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜)
Φ(𝜉𝜉𝑠𝑠𝑠𝑠𝑠𝑠)

 To make this strategy work
 Derive 𝜉𝜉∗

 |Φ 𝜉𝜉∗ − Φ(𝜉𝜉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) |<𝜀𝜀



General Equivalence Theorem 



General Equivalence Theorem 



Algorithm



Algorithm



Convergence Theorem



Bounded optimal design to subdata



Simulation setup

 N=100,000

 n=10,000

 𝑋𝑋 ~ 𝑁𝑁𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑁𝑁
0
0
0

, 0.5𝐼𝐼 + 0.5𝐽𝐽

 𝑃𝑃𝑎𝑎𝑁𝑁𝑃𝑃 𝑌𝑌 = 𝑖𝑖 𝑋𝑋, 𝑘𝑘 = exp 𝜽𝜽𝑘𝑘𝑖𝑖
′ 𝑿𝑿

1+∑𝑙𝑙=1
2 exp 𝜽𝜽𝑘𝑘𝑙𝑙

′ 𝑿𝑿

 𝑃𝑃𝑎𝑎𝑁𝑁𝑃𝑃 𝑘𝑘 𝑋𝑋 = exp 𝜸𝜸𝑘𝑘
′ 𝑿𝑿

1+∑𝑗𝑗=1
2 exp 𝜸𝜸𝑗𝑗

′𝑿𝑿

β1 β2

-5 -5

-5 6

10 -11

-17 18

0 0 0 0 0 0
9 -12 -15 18 27 -30
12 -15 -18 21 30 -33
15 -18 -21 24 33 -36

𝜃𝜃11 𝜃𝜃12 𝜃𝜃21 𝜃𝜃22 𝜃𝜃31 𝜃𝜃32



Competing methods

 SRS1 – 10,000

 SRS2 – 20,000

 Full data: 100,000

 Optimal subdata
 SRS: 3,000
 Optimal subdata: 7,000
 Combined: 3,000+7,000 



Criteria

 Computation time

 Efficiency
 𝑃𝑃𝑎𝑎𝑁𝑁𝑃𝑃 𝑌𝑌 𝑋𝑋
 Root-mean-squared error of prediction (RMSEP)

 Size of test data: 100,000 

 Repeat: 100 times



Comparisons

24.85 = 9.38 + 1.27 + 14.20

Multinomial logistic regression model: 0.6385 

SRS1 SRS2 Full OPT

RMSEP 0.0555 0.0513 0.0497 0.0394

Time(s) 20.08 56.43 328.13 24.85*



HARTH: A Human Activity Recognition Dataset for Machine 
Learning 

 HARTH - UCI Machine Learning Repository

 A benchmark dataset for researchers to develop innovative machine learning approaches for 
precise human activity recognition in free living.

https://archive.ics.uci.edu/dataset/779/harth


HARTH

 A professionally-annotated dataset containing 22 subjects wearing two 3-axial accelerometers 
for around 2 hours in a free-living setting. The sensors were attached to the right thigh and 
lower back. 

 Video recordings of a chest-mounted camera were used to annotate the performed activities 
frame-by-frame.



HARTH

 # Instances: 6,461,328

 # Features: 8
 Time (every 0.02 second)
 2×3 sensor signals
 Label (12 categories)

 Aleksej Logacjov, Kerstin Bach, Atle Kongsvold, H. Bårdstu, P. Mork. 2021
 Studying 9 categories: walking; running; stairs (ascending); stairs (descending); standing; 

sitting; lying; cycling (sit); and cycling (stand)  (Dataset has 12 categories in total)
 One-second window
 𝑋𝑋𝑖𝑖: 6 × 50 matrix 
 8 competing methods: k-NN, SVM, RF, XGB, BiLSTM, CNN, mCNN
 leave-one-subject-out cross-validation



HARTH

 Consider 7 categories:
 walking; running; sitting; lying; cycling (sit); cycling (stand); standing

 N = 115,850 

 �𝑋𝑋𝑖𝑖: 12 × 1

 Multinomial logistic regression model



HARTH

 Four methods:
 SRS1 – 10,000
 SRS2 – 20,000
 Full data
 Optimal subdata

 SRS: 3,000
 Optimal subdata: 7,000
 Combined: 3,000+7,000 

 Repeat 100 times



Classification accuracy rate

Walking Running Sitting Lying
Cyling 
(sit)

Cyling 
(Stand) Standing Average

SRS1 0.91 0.89 0.97 0.98 0.81 0.47 0.91 0.849

SRS2 0.91 0.90 0.98 0.98 0.82 0.47 0.91 0.853

Full 0.92 0.90 0.99 0.98 0.82 0.48 0.91 0.857

OPT 0.92 0.92 0.99 0.99 0.85 0.54 0.91 0.875

SVM 0.90 0.96 0.99 0.95 0.90 0.56 0.86 0.874



HARTH

 Randomly split the data:
 2/3 for training and 1/3 for testing

 Four methods:
 SRS1 – 10,000
 SRS2 – 20,000
 Full data
 Optimal subdata

 SRS: 3,000
 Optimal subdata: 7,000
 Combined: 3,000+7,000 

 Repeat 100 times



Classification error rates

SRS1 SRS2 Full OPT

Mean 0.0326 0.0315 0.0312 0.0308

Std 0.0032 0.0013 0.0008 0.0013
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