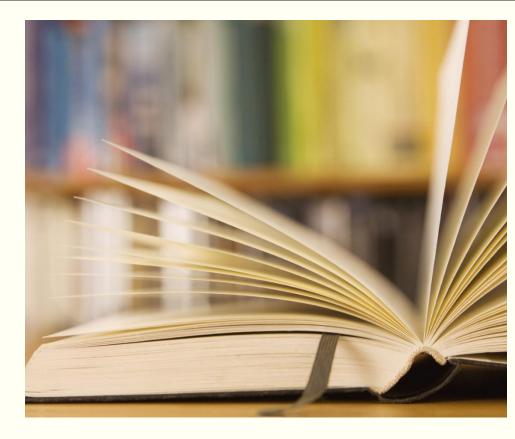
OPTIMAL SUBDATA SELECTION FOR LARGE-SCALE MULTI-CLASS LOGISTIC REGRESSION

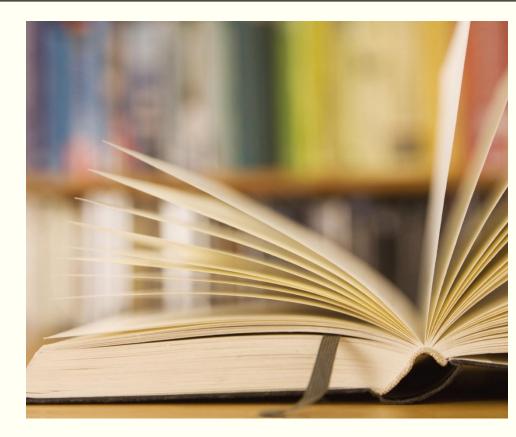
MIN YANG

UNIVERSITY OF ILLINOIS AT CHICAGO



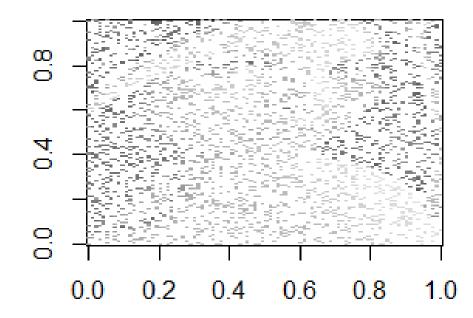
MIN YANG

UNIVERSITY OF ILLINOIS AT CHICAGO



- Scientific and evidence-based decision
 - Policy making, marketing strategy, ...
 - Interpretable
- How to detect relationships
 - Size
 - Complex
 - Statistical models?

A motivated example



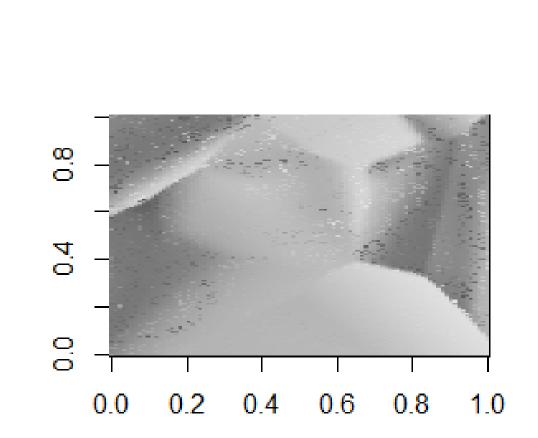
Х	Y	Gray
1	3	118
1	10	127
1	17	127
1	21	127
1	25	130
1	26	134
1	28	135
1	35	135
1	36	141
1	37	137
•	•	

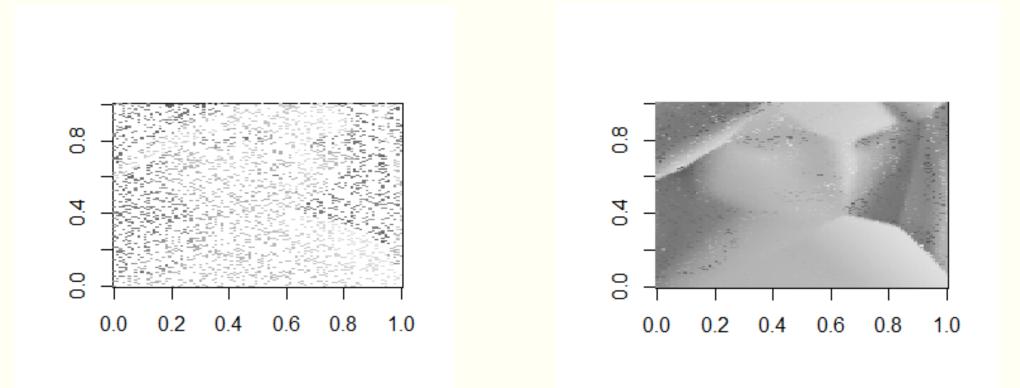
Fundamental question

Given $(X_1, Y_1), \dots, (X_N, Y_N),$

$Y = f(X, \theta)$

A motivated example





Mixture-of-Experts modeling

Proposed by Jacobs et al. (1991)

Discover the hidden clusters

Striking a balance between flexibility and interpretability

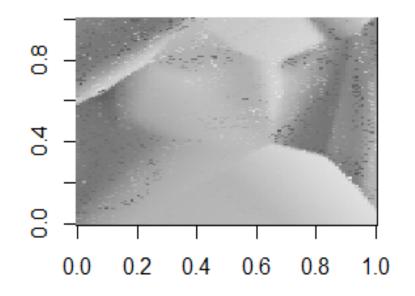
General Framework of Mixture of Experts

- $(X_1, Y_1), \cdots, (X_N, Y_N)$
- K gate functions and K regression models (experts)
 - Y_i is modeled by X_i through one of the experts
 - It is unknown which expert is employed

•
$$g_k(\mathbf{X}_i, \mathbf{\gamma}) = \frac{\exp(\mathbf{\gamma}'_k \mathbf{X}_i)}{1 + \sum_{j=1}^{K-1} \exp(\mathbf{\gamma}'_j \mathbf{X}_i)}$$

- Experts
 - Depends on the nature of the responses: linear, GLMS, …

A motivated example



Gray =
$$\sum_{k} \frac{\exp(\gamma'_{k}X_{i})}{1+\sum_{j=1}^{K-1}\exp(\gamma'_{j}X_{i})} (\boldsymbol{\theta}'_{k}X_{i})$$

γ_1	110.43	-1.63	3.47
γ_2	-57.56	0.55	-0.79
γ_3	-117.84	-0.49	5.16
γ_4	-15.35	-0.48	2.95
•	•	•	•
•			
•	•	•	•
γ_{29}	-362.35	-1.90	10.31

θ_1	-266.27	1.83	4.98
θ_2	-59.82	0.95	-1.40
θ_3	-38.51	1.01	1.49
θ_4	448.81	-1.97	-0.73
	•	•	
	•	•	
		•	
θ_{30}	49.93	-0.06	0.09

Ability to capture complex relationships

Compare with functional data analysis (Chen, Hall, and Müller, 2011)

Table 1: KASE comparison between CHM and ME											
Madal N		$\frac{R = 0.1}{\text{CHM ME}}$		R = 0.5		M1_1	M	R = 0.1		R = 0.5	
Model IV	11	CHM	ME	CHM	ME	Model	18 -	CHM	ME	CHM	ME
	50	0.0464	0.0222	0.1096	0.0242		50	0.0970	0.0298	0.2562	0.0829
(i)	200	0.0279	0.0216	0.0577	0.0221	(ii)	200	0.0486	0.0132	0.1122	0.0392
	800	0.0156	0.0201	0.0315	0.0206		800	0.0226	0.0069	0.0526	0.0184

Table 1: RASE comparison between CHM and ME

 Compare with Reproducing Kernel Hilbert Space (RKHS) Approach (Xiong, Qian, and Wu, 2013; Sauer, Gramacy, and Higdon, 2023)

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Table 3: MSPE comparison between RKHS and ME										
	N = 1000 $N = 2000$						Case (::)	N = 200		N = 500	
MSPE 0.0703 0.0324 0.0436 0.0271 MSPE 0.9725 0.3924 0.4088 0.2365	Case (1)	RKHS	ME	RKHS	ME		Case (11)	RKHS	ME	RKHS	ME
	MSPE	0.0703	0.0324	0.0436	0.0271	-	MSPE	0.9725	0.3924	0.4088	0.2365

Computation issue

No closed form solution

$$L(\boldsymbol{\beta}|\boldsymbol{X},\boldsymbol{Y}) = \prod_{i=1}^{N} \left(\sum_{k=1}^{S} g_k(\boldsymbol{X}_i,\boldsymbol{\gamma}) L(\boldsymbol{\beta}|\boldsymbol{X}_i,\boldsymbol{y}_i) \right)$$

- EM algorithm or Bayesian approach
- Computation expensive for large dataset
 - Depends on # of clusters, # of start values
 - For the motivated example ($n \approx 3000$)
 - One hour
 - Take weeks for n=10⁶
 - Two weeks

Computation complexity and statistical efficiency

- With size of data and number of clusters increase, the computation cost increase dramatically
- The tradeoff between the computation complexity and statistical efficiency?

 One of six suggested core research topics of theoretical foundations of data science (NSF)

Two main approaches

- Subsampling with sampling probability
 - Pro: Robustness, outliers
 - Con: Limited by subsize

- Information-based subdata selection
 - Based on optimal design theory
 - Fixed n, the information increases with N

A TOY EXAMPLE ABOUT OPTIMAL DESIGN

Rationale

- Matrix form: $Y = X\beta + \epsilon$
- BLUE: $\hat{\beta} = (X'X)^{-1}X'Y$ and $Var(\hat{\beta}) = (X'X)^{-1}\sigma^2$
- How to select X such that $(X'X)^{-1}$ is "minimized"?

$$\begin{split} X_{I} &= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}; X_{II} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \end{pmatrix}; \\ X_{III} &= \begin{pmatrix} 1 & 1 & 1 & -1 \\ 1 & 1 & -1 & 1 \\ 1 & -1 & 1 & 1 \\ -1 & 1 & 1 & 1 \end{pmatrix}; \\ (X_{I}'X_{I})^{-1} &= I; \\ (X_{II}'X_{II})^{-1} &= I/2; \\ (X_{III}'X_{III})^{-1} &= I/4 \end{split}$$

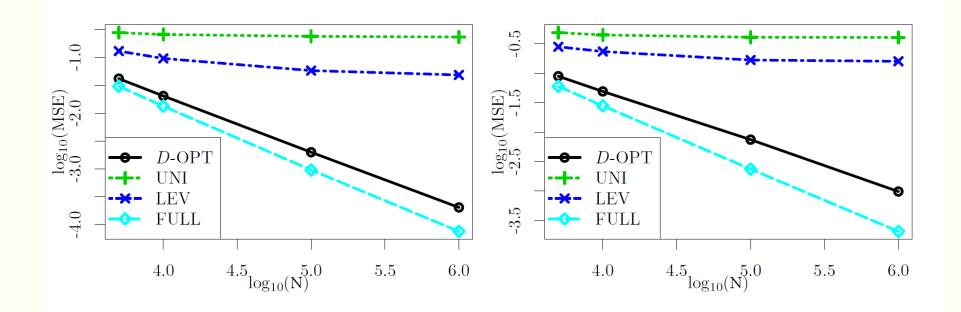
- Difference between optimal design and subdata selection
 - Perfect points may not exist

Large N and n

- Intractable
 - Discrete nature
 - No tool
 - N-P hard problem

- Information-Based Optimal Subdata Selection (IBOSS) (Wang, Yang, and Stufken, 2019)
- Linear model $E(Y) = X\beta$
- Characterizing the design maximizing information matrix
- An algorithm of selecting the subset based on the characterization
 - Fixed n, the information increases with N
- Subsampling with sampling probability
 - Limited by subsize

IBOSS approach



- Builds the theoretical foundation
- Extends to nonlinear models: Logistic regression model
- Extends to variable selection: LASSO

Limitations

- Simple model
 - Unlikely suitable for large dataset with complexity structure
 - Possible solution: Mixture of experts
- Efficiency of the algorithm?
 - Based on the characterization of optimal design
 - May not be efficient

Challenges for Mixture of Experts

- Information matrix
 - No explicit form
- Charactering optimal designs
- Algorithm?

Strategy

$$\begin{split} I(\delta) &= \sum_{i \in \delta} \left(I_{C_i} - I_{M_i} \right) \leq \sum_{i \in \delta} I_{C_i}, \text{ so that} \\ det(I(\delta)) &\leq det(\sum_{i \in \delta} I_{C_i}). \end{split}$$

- Choosing a subset δ
 - Maximizing $\sum_{i \in \delta} I_{C_i}$
 - Minimizing $\sum_{i \in \delta} I_{M_i}$

Asymptotic result

 Under clusterwise linear regression model, where gate functions are constants and experts are linear

> Let $\mu_z = (\mu_{z1}, ..., \mu_{zp})^T$ and $\Sigma_z = \Phi_z \rho \Phi_z$ be a full rank covariance matrix, where $\Phi_z = blkdiag(\sigma_{z1}, ..., \sigma_{zp})$ is a diagonal matrix of standard deviations and $\rho = (\rho_{jj'})_{p \times p}$ is a correlation matrix.

> **Theorem 3.** Let $\mathbf{z}_1, ..., \mathbf{z}_N$ be iid, where $\mathbf{z}_i = (z_{i1}, z_{i2}, ..., z_{ip})^T$. Assuming that $y_i \sim \sum_{g=1}^G \pi_g \phi(\mathbf{x}_i^T \beta_g, \sigma_g^2)$, where $\mathbf{x}_i^T = (1, \mathbf{z}_i^T)^T$, and δ^* corresponds to subdata selected by Algorithm 1, then $\sum_{i \in \delta^*} \mathbf{I}_{M_i} \xrightarrow{\mathbb{P}} \mathbf{0}_{(Gp+3G-1)\times(Gp+3G-1)}$ when $N \to \infty$ under one of the following conditions:

(a) $\mathbf{z}_i \sim \mathbf{N}(\boldsymbol{\mu}_z, \boldsymbol{\Sigma}_z)$ and for any triplet (g, g', j) with $g, g' \in \{1, ..., G\}, g \neq g'$ and $j \in \{1, ..., p\}$, it holds that $\sum_{l=1}^p \rho_{lj}\sigma_{zj}(\beta_{g,l} - \beta_{g',l}) \neq 0$; (b) $\mathbf{z}_i \sim \mathbf{LN}(\boldsymbol{\mu}_z, \boldsymbol{\Sigma}_z)$ and for any triplet (g, g', j) with $g, g' \in \{1, ..., G\}, g \neq g'$ and $j \in \{1, ..., p\}$, it holds that $\beta_{g,j} - \beta_{g',j} \neq 0$ and $\sum_{l \in \mathcal{L}_{\min,j}} (\beta_{g,l} - \beta_{g',l}) \neq 0$, where $\mathcal{L}_{\min,j} = \{l \mid \rho_{lj} = \rho_{\min,j} ; l = 1, ..., p\}$ and $\rho_{\min,j} = \min_{l} \rho_{lj} < 0$.

How to derive an efficient algorithm?

- Algorithm based on characterization of an optimal design?
 - Pro: very fast
 - Con:
 - characterization may not be feasible
 - May not be efficient

- New strategy
 - approximate bounded optimal design approach

Rationale

- Approximate deign context
 - Equivalence theorem
- Subdata selection
 - Be selected at most once: $\omega_i = 0$ or $\frac{1}{n}$
- Bounded approximate optimal design

•
$$x_1, \dots, x_n \iff \left(x_1, \frac{1}{n}\right), \dots, \left(x_n, \frac{1}{n}\right)$$

•
$$\Xi = \{\xi | \xi = (x_i, \omega_i), i = 1, ..., k, 0 \le \omega_i \le \frac{1}{n}\}$$

Rationale

- $\xi^* = \operatorname{argmin}_{\xi \in \Xi} \Phi(I_{\xi})$
- ξ^{exact} : $\omega_i = \frac{1}{n}$, i = 1, ..., n based on ξ^*
- $\xi^{opt-exact}$: the optimal exact subdata (projected on Ξ)
- For a selected subdata ξ^{sub} (projected on Ξ), its efficiency is $\frac{\Phi(\xi^{opt-exact})}{\Phi(\xi^{sub})}$, and

$$\frac{\Phi(\xi^*)}{\Phi(\xi^{sub})} \leq \frac{\Phi(\xi^{opt-exact})}{\Phi(\xi^{sub})} \leq \frac{\Phi(\xi^{exact})}{\Phi(\xi^{sub})}$$

- To make this strategy work
 - Derive ξ^*
 - $|\Phi(\xi^*) \Phi(\xi^{exact})| \leq \varepsilon$

Theorem

The following two statements are equivalent:

• ξ^* is Φ optimal in Ξ^{ν}_{μ}

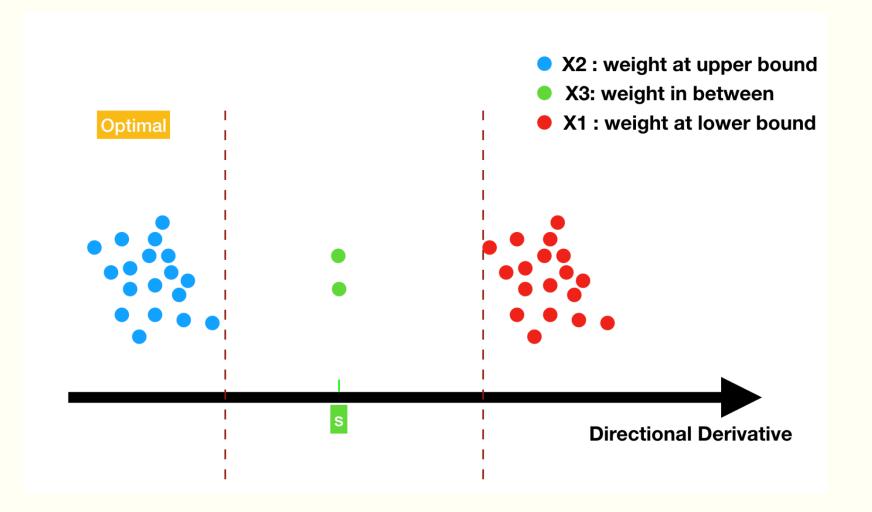
2 There are subsets X_1 , $X_2 \subset X$ and a number s such that

(a)
$$\omega_i = \nu_i \text{ for } x_i \in \mathcal{X}_1 \text{ and } \omega_i = \mu_i \text{ for } x_i \in \mathcal{X}_2,$$

(b) $\max_{x_i \in \mathcal{X}_2} F_{\Phi}(\xi^*; x_i) \leq s \leq \min_{x_i \in \mathcal{X}_1} F_{\Phi}(\xi^*; x_i),$
(c) $F_{\Phi}(\xi^*; x) = s \text{ on } \mathcal{X} \setminus (\mathcal{X}_1 \cup \mathcal{X}_2) \text{ if } \mathcal{X} \setminus (\mathcal{X}_1 \cup \mathcal{X}_2) \neq \emptyset \text{ with}$

$$s = \frac{-\sum_{x_i \in \mathcal{X}_1} F_{\Phi}(\xi^*; x_i)\nu_i - \sum_{x_i \in \mathcal{X}_2} F_{\Phi}(\xi^*; x_i)\mu_i}{1 - (\sum_{x_i \in \mathcal{X}_1} \nu_i + \sum_{x_i \in \mathcal{X}_2} \mu_i)}$$
(1)

where $\xi^* = \{(x_i, \omega_i)\} \in \Xi^{\nu}_{\mu}$, $\mathcal{X}_1 = \{x_i | x_i \in \mathcal{X}, \omega_i = \nu_i\}$ and $\mathcal{X}_2 = \{x_i | x_i \in \mathcal{X}, \omega_i = \mu_i\}$; $F_{\Phi}(\xi^*; x)$ be the directional derivative of Φ in the direction of x.



The Main Group Exchange Algorithm

Input \mathcal{X} , k, μ and tol and execute following steps:

- Initialize $\boldsymbol{\omega}$ such that $\boldsymbol{\xi} = (\mathcal{X}, \boldsymbol{\omega})$ is a valid bounded design.
- 2 Let $\mathcal{X}_1 = \{\mathbf{x}_i | \mathbf{x}_i \in \mathcal{X}, \omega_i = 0\}$, $\mathcal{X}_2 = \{\mathbf{x}_i | \mathbf{x}_i \in \mathcal{X}, \omega_i = \mu_i\}$, $\mathcal{X}_3 = \{\mathbf{x}_i | \mathbf{x}_i \in \mathcal{X}, 0 < \omega_i < \mu_i\}$.
- 3 If
 - (a) $F_{\Phi_{p}}(\xi, \mathbf{x}_{1}^{(minF)}) F_{\Phi_{p}}(\xi, \mathbf{x}_{3}^{(maxF)}) > (-tol)$, and (b) $F_{\Phi_{p}}(\xi, \mathbf{x}_{3}^{(minF)}) - F_{\Phi_{p}}(\xi, \mathbf{x}_{2}^{(maxF)}) > (-tol)$

then output ξ . Otherwise, go to step 4.

- (a) If step 3 (a) is not satisfied, move x₁^(minF) to X₃.
 (b) If step 3 (b) is not satisfied, move x₂^(maxF) to X₃.
- Solution 5 Derive optimal weights ∀x_i ∈ X₃ through Newton's method. Then, go to step 3.

where \mathcal{X}_1 , \mathcal{X}_2 and \mathcal{X}_3 are defined as a set of points from design space with weights equal to lower bounds, equal to upper bounds and in between lower and upper bounds respectively.(continued...)

(...continued) Let $\mathbf{x}_{1}^{(minF)}$, $\mathbf{x}_{3}^{(maxF)}$, $\mathbf{x}_{3}^{(minF)}$ and $\mathbf{x}_{2}^{(maxF)}$ be defined as: **1** $\mathbf{x}_{1}^{(minF)}$ = arg min_{$\mathbf{x}_{i} \in \mathcal{X}_{1}$} $F_{\Phi_{p}}(\xi, \mathbf{x}_{i})$ **2** $\mathbf{x}_{3}^{(maxF)}$ = ifelse($\mathcal{X}_{3} = \emptyset, \mathbf{x}_{1}^{(minF)}$, arg max_{$\mathbf{x}_{i} \in \mathcal{X}_{3}$} $F_{\Phi_{p}}(\xi, \mathbf{x}_{i})$ **3** $\mathbf{x}_{3}^{(minF)}$ = ifelse($\mathcal{X}_{3} = \emptyset, \mathbf{x}_{1}^{(minF)}$, arg min_{$\mathbf{x}_{i} \in \mathcal{X}_{3}$} $F_{\Phi_{p}}(\xi, \mathbf{x}_{i})$ **3** $\mathbf{x}_{2}^{(maxF)}$ = ifelse($\mathcal{X}_{2} = \emptyset, \mathbf{x}_{3}^{(minF)}$, arg min_{$\mathbf{x}_{i} \in \mathcal{X}_{2}$} $F_{\Phi_{p}}(\xi, \mathbf{x}_{i})$ **4** where ifelse(a,b,c) is a function which returns b if condition a is satisfied,

otherwise returns c.

Convergence Theorem

$$S^{(t)} = (\mathcal{X}_1^{(t)}, \mathcal{X}_2^{(t)}, \mathcal{X}_3^{(t)}).$$

Theorem

Let $\frac{\partial f}{\partial \theta^T}$ be a matrix of full row rank and the initial sets $S^{(0)}$ satisfies $M_{\xi_{S^{(0)}}} > 0$. Then sequence of designs $\{\xi_{S^{(t)}}; t \ge 0\}$, converges to an optimal design which minimizes $\Phi_p(\mathbf{\Sigma}_{\xi}(f))$, as $t \to \infty$.

Subdata selection method with GE Input X, n.

• Let
$$\mu = \frac{1}{n}$$

- 2 Find optimal design ξ through GE algorithm with upper bound μ and lower bound 0.
- **3** Output *n* points of ξ which have largest *n* weights.

Simulation setup

- N=100,000
- n=10,000

•
$$X \sim Normal\left(\begin{pmatrix} 0\\0\\0 \end{pmatrix}, 0.5I + 0.5J \right)$$

•
$$Prob(Y = i | X, k) = \frac{\exp(\theta'_{ki}X)}{1 + \sum_{l=1}^{2} \exp(\theta'_{kl}X)}$$

1

~

•
$$Prob(k|X) = \frac{\exp(\gamma'_k X)}{1 + \sum_{j=1}^2 \exp(\gamma'_j X)}$$

β ₁	β2
-5	-5
-5	6
10	-11
-17	18

θ_{11}	θ_{12}	θ_{21}	θ_{22}	θ_{31}	θ_{32}
0	0	0	0	0	02
9	-12	-15	18	27	-30
12	-15	-18	21	30	-33
15	-18	-21	24	33	-36

Competing methods

- SRS1 10,000
- SRS2 20,000
- Full data: 100,000
- Optimal subdata
 - SRS: 3,000
 - Optimal subdata: 7,000
 - Combined: 3,000+7,000

Criteria

- Computation time
- Efficiency
 - Prob(Y|X)
 - Root-mean-squared error of prediction (RMSEP)
- Size of test data: 100,000
- Repeat: 100 times

	SRS1	SRS2	Full	OPT				
RMSEP	0.0555	0.0513	0.0497	0.0394				
Time(s)	20.08	56.43	328.13	24.85*				
24.85 = 9.38 + 1.27 + 14.20								

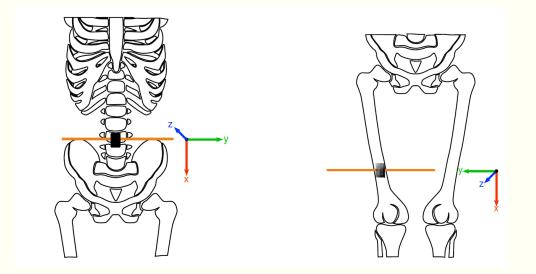
Multinomial logistic regression model: 0.6385

HARTH: A Human Activity Recognition Dataset for Machine Learning

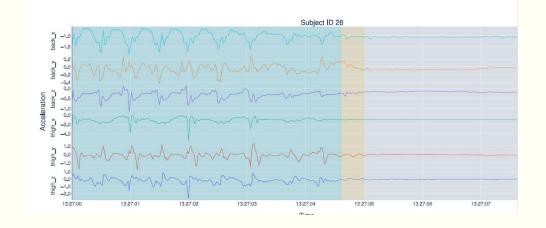
HARTH - UCI Machine Learning Repository

 A benchmark dataset for researchers to develop innovative machine learning approaches for precise human activity recognition in free living.

- A professionally-annotated dataset containing 22 subjects wearing two 3-axial accelerometers for around 2 hours in a free-living setting. The sensors were attached to the right thigh and lower back.
- Video recordings of a chest-mounted camera were used to annotate the performed activities frame-by-frame.



- # Instances: 6,461,328
- # Features: 8
 - Time (every 0.02 second)
 - 2×3 sensor signals
 - Label (12 categories)



- Aleksej Logacjov, Kerstin Bach, Atle Kongsvold, H. Bårdstu, P. Mork. 2021
 - Studying 9 categories: walking; running; stairs (ascending); stairs (descending); standing; sitting; lying; cycling (sit); and cycling (stand) (Dataset has 12 categories in total)
 - One-second window
 - $X_i: 6 \times 50$ matrix
 - 8 competing methods: k-NN, SVM, RF, XGB, BiLSTM, CNN, mCNN
 - leave-one-subject-out cross-validation

- Consider 7 categories:
 - walking; running; sitting; lying; cycling (sit); cycling (stand); standing
- N = 115,850
- \widetilde{X}_i : 12 × 1

Multinomial logistic regression model

• Four methods:

- SRS1 10,000
- SRS2 20,000
- Full data
- Optimal subdata
 - SRS: 3,000
 - Optimal subdata: 7,000
 - Combined: 3,000+7,000
- Repeat 100 times

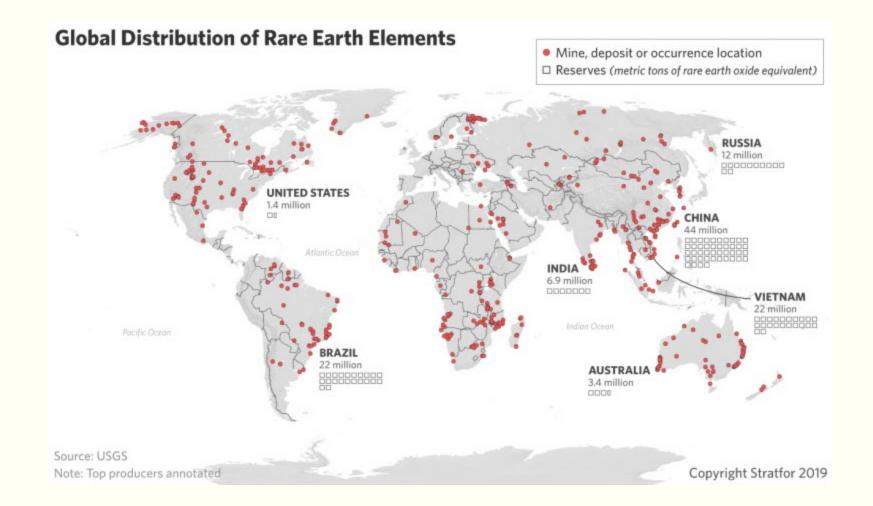
	Walking	Running	Sitting	Lying	Cyling (sit)	Cyling (Stand)	Standing	Average
SRS1	0.91	0.89	0.97	0.98	0.81	0.47	0.91	0.849
SRS2	0.91	0.90	0.98	0.98	0.82	0.47	0.91	0.853
Full	0.92	0.90	0.99	0.98	0.82	0.48	0.91	0.857
OPT	0.92	0.92	0.99	0.99	0.85	0.54	0.91	0.875
SVM	0.90	0.96	0.99	0.95	0.90	0.56	0.86	0.874

- Randomly split the data:
 - 2/3 for training and 1/3 for testing

Four methods:

- SRS1 10,000
- SRS2 20,000
- Full data
- Optimal subdata
 - SRS: 3,000
 - Optimal subdata: 7,000
 - Combined: 3,000+7,000
- Repeat 100 times

	SRS1	SRS2	Full	OPT
Mean	0.0326	0.0315	0.0312	0.0308
Std	0.0032	0.0013	0.0008	0.0013



Acknowledgement

- Supported by
 - NSF DMS-2210546