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Phenomenon of data science

» Scientific and evidence-based decision
= Policy making, marketing strategy, ..
= |nterpretable

= How to detect relationships
= Size
= Complex
= Statistical models?



A motivated example
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Fundamental question

Given (Xl; Yl); I(XN) YN)’

Y = f(X,0)



A motivated example
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Mixture-of-Experts modeling

= Proposed by Jacobs et al. (1991)

= Discover the hidden clusters

= Striking a balance between flexibility and interpretability



General Framework of Mixture of Experts

" (X1; Y1); ;(XN; YN)

= K gate functions and K regression models (experts)
= ¥, is modeled by X; through one of the experts
= |t is unknown which expert is employed

exp (¥ Xi)
K-1 !
1+ ;27 exp(¥Xi)

" gk (X, y) =

= Experts
= Depends on the nature of the responses: linear, GLMS, ---



A motivated example

exp(ViXi)
143K exp(v)X;

Gray = X )(0;{X,-)
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Ability to capture complex relationships

= Compare with functional data analysis (Chen, Hall, and Miiller, 2011)

Table 1: RASE comparison between CHM and ME

] R=01 R=05 | - R=01 R=05
Model N —=mir—wve e e Medel N —=mr——wE oM ME
0.0970 0.0208 0.2562 0.0829

50  0.0464 0.0222 0.1096 0.0242 50
200 0.0486 0.0132 0.1122 0.0392

(i) 200 0.0279 0.0216 0.0577 0.0221 (i)
800 0.0156 0.0201 0.0315 0.0206 800 0.0226 0.0069 0.0526 0.0184

= Compare with Reproducing Kernel Hilbert Space (RKHS) Approach (Xiong, Qian,
and Wu, 2013; Sauer, Gramacy, and Higdon,2023)

Table 3: MSPE comparison between RKHS and ME

_ N = 1000 N = 2000 Coce (i N = 200 N =500
ase () RS ME  RKOS ME ase (i) pEHS ME  RKOS  ME
MSPE 00725 0.3924 04088 0.2365

MSPE 0.0703 0.0324 0.0436 0.0271




Computation issue

* No closed form solution

L(BIX,Y) = H(ng i /Bxlayl))

=1

= EM algorithm or Bayesian approach

= Computation expensive for large dataset
= Depends on # of clusters, # of start values
= For the motivated example (n=3000)
= One hour

» Take weeks for n=10"6
= Two weeks



Computation complexity and statistical efficiency

= With size of data and number of clusters increase, the computation cost
Increase dramatically

= The tradeoff between the computation complexity and statistical efficiency?

= One of six suggested core research topics of theoretical foundations of data
science (NSF)



Two main approaches

= Subsampling with sampling probability
= Pro: Robustness, outliers
= Con: Limited by subsize

» [Information-based subdata selection
= Based on optimal design theory

= Fixed n, the information increases with N



A TOY EXAMPLE ABOUT OPTIMAL
DESIGN










Rationale

e Matrix form: Y = X5 + ¢
e BLUE: = (X'X)"'X'Y and Var(3) = (X'X) 102
e How to select X such that (X’X) ' is “minimized"?

1000 1 1 0 0
0100 1 =10 0
X=loo1o0 | =10 o 1 1 |’
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Selecting an optimal subset

= Difference between optimal design and subdata selection
= Perfect points may not exist

= Large N and n

» [ntractable
= Discrete nature

= No tool
= N-P hard problem



Available approaches

L Inforn)wation-Based Optimal Subdata Selection (IBOSS) (Wang, Yang, and Stufken,
2019

= Linear model E(Y) = XB
= Characterizing the design maximizing information matrix

= An algorithm of selecting the subset based on the characterization
* Fixed n, the information increases with N

= Subsampling with sampling probability
= Limited by subsize



IBOSS approach
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= Builds the theoretical foundation
= Extends to nonlinear models: Logistic regression model

= Extends to variable selection: LASSO



Limitations

= Simple model
= Unlikely suitable for large dataset with complexity structure
= Possible solution: Mixture of experts

= Efficiency of the algorithm?
= Based on the characterization of optimal design
= May not be efficient



Challenges for Mixture of Experts

» Information matrix
= No explicit form

= Charactering optimal designs

= Algorithm?



Strategy

16) =) (Ie, — In,) <> I, so that

icd =]

det(I(5)) < det(Y Ir,).

= Choosing a subset §
= Maximizing Y;eslc,
= Minimizing Y;es Im,



Asymptotic result

= Under clusterwise linear regression model, where gate functions are constants
and experts are linear

Let . = (pa1y ooy ,uzp)T and ¥, = ®_pP. be a full rank covariance matrix, where
®, = blkdiag(oz1,...,0.p) is a diagonal matrix of standard deviations and p =

(pjj )pxp 18 & correlation matrix.

Theorem 3. Let zi,...,zy be iid, where z; = (21, 22, ..., zip) .  Assuming that
yp ~ ):;';1 Tob(x! By, 02), where xI = (1,2])", and &* corresponds to subdata
selected by Algorithm then 35 Lug, 5 0(Gptrac—1)x(Gprac—1) when N — oo

under one of the following conditions:

(a) z; ~ N(p., X.) and for any triplet (g,4',7) with g,¢' € {1,...,G},9 # ¢ and
j € {1,...,p}, it holds that ép[jffzj(.ﬁg,l — Bga) #0;

(b) z; ~ LN(p,,X.) and for any triplet (g, ¢, j) with g,¢' € {1,...,G},g # ¢ and
€ {1,..p}, it holds that By; — Bys # 0 and Y (Bez — fBys) # 0, where

lEffmin.j
£mi‘nj = {‘5 | P1j = Pming > =1, P} and Pmin,j = mlin P < 0.



How to derive an efficient algorithm?

= Algorithm based on characterization of an optimal design?
= Pro: very fast

= Con:
» characterization may not be feasible
= May not be efficient

= New strategy

= approximate bounded optimal design approach



Rationale

= Approximate deign context
= Equivalence theorem

= Subdata selection

= Be selected at most once: w; =0or %

= Bounded approximate optimal design

1 1
B x1, ---,xn @ (x1,;), ---,(Xn,;)

fE= (= o i=1 k0 S0 <2



Rationale

= §T = argmingezP(Is)

n fexact. .= % i=1,..,n based on &*

= gopt-exact: the optimal exact subdata (projected on Z)

q)(gopt—exact)

q)(gsub) ’

= For a selected subdata &5“?(projected on ), its efficiency is

and

P o P(EOPITEXACT) g(gexact)
cp(gsub)_ q)(gsub) - q)(fsub)

= To make this strategy work
= Derive ¢&*
= D) — D) |<e



General Equivalence Theorem

Theorem

The following two statements are equivalent:
Q@ ¢ is ® optimal in =),
@ T here are subsets X1, X» C X and a number s such that

(a) wi =v; for x; € X1 and w; = p; for x; € Xb,

¥oy ) < e < i ey
(b) LS Fo(£; x) <s < iy Fo(£*; xi),

(c) Fo(¢*;x)=son X\ (X UX) if X\ (X UX,) # 0 with

o — o ZXiEXl Fcb(f*; Xi)l/i o ZXiEXz Fcb(f*; Xl'):ul' (1)
1- (Zx,-EXl Vi + ZXI'EXQ :U“l)
where £* = {(x;,wi)} € =}, X1 = {xi|x; € X,w; = v;} and
Xo = {xij|x; € X,w; = pi}; Fo(£"; x) be the directional derivative of ® in
the direction of x.




General Equivalence Theorem

® X2 : weight at upper bound
X3: weight in between
® X1 : weight at lower bound
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Algorithm

The Main Group Exchange Algorithm

Input X', k, 1 and tol and execute following steps:

© Initialize w such that £ = (X,w) is a valid bounded design.

Q Let A1 = {x|x; € X,w; =0}, X = {xj|x; € X, w; = pui},
X3 = {xj|x; € X,0 < w; < pi}.

QIf
(a) F¢P(§,x(lmi"F)) - F¢p(§,xgmaXF)) > (—tol), and
(b) Fo,(€.X5™") = Fo, (€.55™")) > (—tol)
then output &. Otherwise, go to step 4.

Q@ (a) If step 3 (a) is not satisfied, move xlmi"F) to As.
(b) If step 3 (b) is not satisfied, move x5">) to ;.

© Derive optimal weights Vx; € A3 through Newton's method. Then, go
to step 3.

where X7, &> and A3 are defined as a set of points from design space with
weights equal to lower bounds, equal to upper bounds and in between lower
and upper bounds respectively.(continued...)



Algorithm

(...continued) |
Let X(m/nF) (maxF) (m/nF)a d (maxF)

1 ;X3 , X3 nd x5 be defined as:
o xgminF) = arg min, ¢ v, Fo, (&, %)
@ x\") = ifelse(x3 = 0, x\™) arg maxy. e v, Fo, (&, X))
o xgmi”F) = ifelse( X3 = (D,xgmi"F),arg min, ¢ x, Fo, (&, Xi)

o xgmaXF) = ifelse(X> = (), XgmmF)v arg miny c v, Fo, (& xi)

where ifelse(a,b,c) is a function which returns b if condition a is satisfied,
otherwise returns c.



Convergence Theorem

SO = (1, 29, 1Y),
Theorem

Let % be a matrix of full row rank and the initial sets S(©) satisfies
M£5(0) > 0. Then sequence of designs {{s+); t > 0}, converges to an

optimal design which minimizes ®, (X¢(f)), as t — oo.




Bounded optimal design to subdata

Subdata selection method with GE
Input A, n.

Q Letu:%

@ Find optimal design & through GE algorithm with upper bound 1 and
lower bound O.

© Output n points of £ which have largest n weights.



Simulation setup

= N=100,000
= n=10,000
0
= X ~ Normal (8),0.51 + 0.5/
« Prob(Y = i|X, k) = 1+z?jf(ei;;i£;lx)
. Prob(k|x) = —=2iX)

1+Z§=1 exp(y}X)

911

12
15

By

-5

-5

10

-17
012 021

0 0

-12 -15
-15 -18
-18 -21

-30
-33
-36



Competing methods

= SRS1 - 10,000
= SRS2 - 20,000
= Full data: 100,000

= Optimal subdata
= SRS: 3,000
= Optimal subdata: 7,000
= Combined: 3,000+7,000



Criteria

= Computation time

= Efficiency
= Prob(Y|X)
= Root-mean-squared error of prediction (RMSEP)

= Size of test data: 100,000
= Repeat: 100 times



Comparisons

SRS1 SRS2 Full OPT

RMSEP  0.0555 0.0513 0.049/7 0.0394

Time(s) 20.08 56.43 32813 24.85*
2485 = 938 + 1.27 + 14.20

Multinomial logistic regression model: 0.6385



HARTH: A Human Activity Recognition Dataset for Machine
Learning

= HARTH - UCI Machine lLearning Repository

= A benchmark dataset for researchers to develop innovative machine learning approaches for
precise human activity recognition in free living.


https://archive.ics.uci.edu/dataset/779/harth

HARTH

= A professionally-annotated dataset containing 22 subjects wearing two 3-axial accelerometers
for around 2 hours in a free-living setting. The sensors were attached to the right thigh and
lower back.

= Video recordings of a chest-mounted camera were used to annotate the performed activities
frame-by-frame.




HARTH

= # Instances: 6,461,328

=" # Features: 8

= Time (every 0.02 second)
= 2x3 sensor signals
= Label (12 categories)

Subject ID 28

= Aleksej Logacjov, Kerstin Bach, Atle Kongsvold, H. Bardstu, P. Mork. 2021

= Studying 9 categories: walking; running; stairs (ascending); stairs (descending); standing;
sitting; lying; cycling (sit); and cycling (stand) (Dataset has 12 categories in total)

One-second window
X;:6 X 50 matrix

8 competing methods: k-NN, SVM, RF, XGB, BiLSTM, CNN, mCNN
leave-one-subject-out cross-validation



HARTH

= Consider 7 categories:
= walking; running; sitting; lying; cycling (sit); cycling (stand); standing

= N =115,850
= X112 %1

= Multinomial logistic regression model



HARTH

= Four methods:

= SRS1 - 10,000
= SRS2 - 20,000
= Full data

= Optimal subdata
= SRS: 3,000
= Optimal subdata: 7,000
= Combined: 3,000+7,000

= Repeat 100 times



Classification accuracy rate

Cyling  Cyling
Walking Running Sitting  Lying (sitt  (Stand) Standing Average

SRS1 0.91 0.89 0.97 0.98 0.81 0.47 0.91 0.849
SRS2 091 0.90 0.98 0.98 0.82 0.47 0.91 0.853

Full 0.92 0.90 0.99 0.98 0.82 0.48 0.91 0.857
OPT 0.92 0.92 0.99 0.99 0.85 0.54 0.91 0.875

SVM 0.90 0.96 0.99 0.95 0.90 0.56 0.86 0.874



HARTH

= Randomly split the data:
= 2/3 for training and 1/3 for testing

= Four methods:

= SRS1 - 10,000
= SRS2 - 20,000
= Full data

= Optimal subdata
= SRS: 3,000
= Optimal subdata: 7,000
= Combined: 3,000+7,000

= Repeat 100 times



Classification error rates

SRS1 SRS2 Full OPT

Mean 0.0326 0.0315 0.0312 0.0308

Std 0.0032 0.0013 0.0008 0.0013



Global Distribution of Rare Earth Elements

® Mine, deposit or occurrence location
O Reserves (metric tons of rare earth oxide equivalent)
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